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Abstract

Analytical expressions are derived for the mean velocity of a liquid flowing in an open rectangular microchannel.

Solutions are decomposed into additive components driven by pressure gradients and by shear stresses on the liquid/

vapor interface. Speeds are computed numerically for meniscus contact angles ranging from 0� to 90�, arbitrary channel
aspect ratios, and for wetting regimes ranging from liquid-full to nearly-dry corner flows. These numerical results are

used to guide the development of several analytical expressions that apply in asymptotic limits of fluid depth and

contact angle. The resulting asymptotes are then blended analytically to obtain relatively simple, accurate, and com-

prehensive expressions for the mean velocity.
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1. Introduction

Liquid flow in microchannels is important to a

number of technologies including cooling of microelec-

tronics by heat pipes and capillary pumped loops as well

as capillary wetting of channels in molding processes

and in chip-based devices for identification of chemical

and biological species. Since channel lengths in these

applications greatly exceed lateral channel dimensions,

such flows can be accurately and efficiently modeled

using one-dimensional analyses in which the frictional

flow resistance is described in terms of a friction coeffi-

cient that depends on the channel geometry, the fraction

of the channel depth that is filled with liquid, and the

wetting angle at the contact between the meniscus and

the solid channel walls.

Although a number of previous numerical studies

have provided friction coefficients for some subsets of

the important parameter range, they generally do not

span a wide range of channel aspect ratios and wetting

angles and rarely do they provide accurate and com-
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prehensive analytical approximations needed for appli-

cation by others. Schneider and DeVos [1] analyzed the

heat transport capability of axially grooved heat pipes.

They presented an approximate model that includes the

influence of liquid–vapor interaction and compared their

results with the exact solution of DiCola [2]. However,

these results are limited to cases in which the fluid depth

is large compared to the radius of the meniscus. Suh et al.

[3] investigated the flow of liquid and vapor in trape-

zoidal and sinusoidal grooves, taking into account the

effects of variable shear stress at the interface. They

modified the approximate relation for the friction in

rectangular grooves which was developed by Schneider

and DeVos [1] to obtain approximations for the trape-

zoidal and sinusoidal grooves that are accurate within

limited parameter ranges (0:656W =h6 2, 0�6 a6 60�).
Thomas et al. [4] presented a semi-analytical solution

and a two-point numerical solution for the mean ve-

locity in trapezoidal grooves with shear stress at the

liquid–vapor interface. Although comprehensive, the

suggested analytical approximations may yield errors as

large as 30%.

In addition to these studies of flows in rectangular

microchannels, there have been several studies describing
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Nomenclature

A cross-sectional area

c coefficient defined by Eq. (30)

D microchannel height

E aspect ratio, D=W
g gravitational acceleration

h meniscus height at the symmetry line

H meniscus height at the wall

L dimension defined by Eq. (5)

n̂n free surface unit outward normal

p pressure

R free surface radius

S liquid area fraction

u axial velocity component

U mean velocity

W microchannel width

x,y,z Cartesian coordinates

Greek symbols

a contact angle

c surface tension coefficient

h angle defined by Eq. (4)

k aspect ratio, W =h
K aspect ratio defined by Eq. (3)

l liquid viscosity

q liquid density

s shear stress at liquid–vapor interface

Subscripts

C corner flow

p pressure solution

s shear solution

x averaged over y
0 value at a ¼ 0�
1 left asymptote

2 right asymptote

Superscript

* dimensionless variable

W

H

α
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Fig. 1. Rectangular groove geometry and coordinate system.
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flow and heat transfer in triangular grooves. Many of

these are focused on the performance of evaporative

cooling devices [5–7]. Furthermore, the papers by

Ayyaswamy et al. [8], Ransohoff and Radke [9], and

Romero and Yost [10] explore frictional relationships for

triangular grooves. The last of these provides useful

analytical approximations for flows in triangular do-

mains that complement the present results. In particular,

those previous results for an apex angle of 90� describe
flows in the corners of rectangular channels and as such

represent end-member solutions in the spectrum of

configurations that we address here.

In the present paper we use numerical solutions of

the Navier–Stokes equations to guide the construction

of analytical approximations that are based upon

blending of asymptotic solutions that apply in the limits

of small and large ratios of channel width to fluid depth

and in the limits of small and large contact angles. The

overall solutions are decomposed into two components.

The first of these is the flow driven by pressure gradients

that may result from capillary forces, gravity, or applied

pressures. The second component is the flow driven by

shear stresses on the liquid–vapor interface. This second

component is sometimes important for parallel flows of

liquid and vapor in heat pipes and capillary pumped

loops. The resulting composite expressions obtained by

blending asymptotic solutions are quite comprehensive

in their range of application. They are relatively easy to

apply and are accurate within a few percent over the

parameter ranges relevant to most practical applica-

tions.
2. Flow configurations

The steady flow of an incompressible Newtonian

liquid is considered for the rectangular groove geometry

shown in Fig. 1. These straight-sided channels are par-

ticularly important in heat transfer applications because

high-aspect-ratio channels having parallel walls can be

fabricated readily from high-conductivity metals using

lithographic and electrodeposition processes [11].

The free surface between the liquid and the vapor has

a constant radius of curvature when the channel width,

W , is considerably less than the characteristic capillary

length, ðc=qgÞ1=2, where c is the surface tension, q is the
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density, and g is the gravitational acceleration. This

condition is typically met for sub-millimeter channel

widths. Under this restriction and for contact angles less

than 90�, the free surface shape is circular and in ac-

cordance with the geometry of Fig. 1 is given by

y ¼ H þ W
2

tan a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 2

4 cos2 a
� x2

r
; ð1Þ

where x and y are measured from the center of the

channel bottom, the radius of the circle is W =ð2 cos aÞ,
and the circle is centered at x ¼ 0 and y ¼ H þ
ðW =2Þ tan a.
(a)

(b)

(c)

Fig. 2. Sequence of flow configurations in a microchannel. (a)

Liquid recedes into channel with increasing contact angle of

meniscus pinned at top edges. (b) Liquid recedes toward bottom

of channel with constant contact angle and surface curvature.

(c) Liquid recedes into the corners with constant contact angle.
Three different flow configurations are identified in

the cross-sectional xy-planes shown in Fig. 2. All three of

these may apply over different axial sections of the same

channel, as in transient wetting processes or evaporating

flows where the fluid depth decreases along the channel.

In the configuration of Fig. 2a, the meniscus remains

attached to the top edge of the channel and the contact

angle may vary freely so long as it remains greater than

the minimum contact angle that is dependent upon the

liquid and solid surface energies. For lesser amounts of

fluid within the channel the interface recedes toward the

bottom of the groove with a constant contact angle, and

thus a constant radius of curvature, as shown in Fig. 2b.

If the meniscus reaches the bottom of the groove, the

flow splits into a pair of corner flows that may further

recede into the corners of the groove as shown in Fig. 2c.

The transition from a single meniscus that spans the

channel into separate corner menisci must conserve mass

and must also preserve the contact angle between the

free surface and the groove side wall. This transition is

continuous only for a minimum contact angle of 0� since
this is the only case where the meniscus has a contact

angle of 0� at the bottom center of the channel just be-

fore and just after the meniscus touches the bottom. For

contact angles a 6¼ 0� the free surface exhibits a jump

when the liquid splits into separate corner flows. Note

that for contact angles a > 45� the free surface curvature
changes from concave up to concave down upon tran-

sition into a corner.

The primary dependent variables in one-dimensional

modeling of microchannel flows are typically the pres-

sure, mean fluid speed, and the liquid area fraction or

saturation, representing the fraction of the channel

cross-section that is filled with liquid. The liquid speed is

related to the pressure gradient through a local friction

factor or a dimensionless speed that must be known as a

function of the local saturation which, in turn, must be

related to the fluid depth within the channel. For the

rectangular groove shown in Fig. 1, the saturation is

given by

S ¼ 2L2

WD
H
L

�
� 1

K
� p� 2ðaþ hÞ � sin½2ðaþ hÞ�

8 cos2 h cos2ðaþ hÞ

�
; ð2Þ

where

K ¼ 2L
H � h

¼ 2 cos a
1� sin a

; ð3Þ

tan h ¼ H � h
L

¼ 2

K
; ð4Þ

and

L ¼ W =2 when meniscus spans channel;
H for the separate corner flow:

�
ð5Þ

It is instructive to note that for corner flows, tan h ¼ 1

regardless of the value of a and thus K ¼ 2 so that
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S ¼ H 2

WD
1

�
� p� 2ðaþ hÞ � sin½2ðaþ hÞ�

4 cos2 h cos2ðaþ hÞ

�
: ð6Þ
3. Governing equations

For fully developed laminar flow at low Reynolds

numbers, the governing Navier–Stokes equations reduce

to a balance between the axial pressure gradient and the

viscous shear stresses in the cross-sectional plane. Thus,

o2u
ox2

þ o2u
oy2

¼ 1

l
op
oz

; ð7Þ

where u is the velocity component in the axial direction,

l is the viscosity of the fluid, and p is the pressure. Shear

forces due to axial velocity variations are neglected be-

cause channel lengths generally exceed lateral dimen-

sions by orders of magnitude.

On the groove walls, the no-slip condition is imposed,

u ¼ 0; ð8Þ

while the boundary condition on the liquid–vapor in-

terface is

lru � n̂n ¼ s; ð9Þ

where n̂n is the unit outward normal to the interface and

s is the shear stress.

The momentum equation is made dimensionless by

introducing the following dimensionless variables:

x� ¼ x
W

; y� ¼ y
h
; u� ¼ �ul

W 2ðop=ozÞ ; s� ¼ �s
W ðop=ozÞ :

ð10Þ

Under this scaling, the momentum balance and free

surface boundary condition, Eqs. (7) and (9), take the

form

o2u�

ox�2
þ k2

o2u�

oy�2
¼ �1 ð11Þ

and

ru� � n̂n� ¼ s�; ð12Þ

where the aspect ratio is

k � W
h
: ð13Þ

Because Eqs. (11) and (12) are linear, the solution can

be decomposed into a pressure-driven flow solution,

u�p, that satisfies

o2u�p
ox�2

þ k2
o2u�p
oy�2

¼ �1; ð14Þ

with zero shear on the liquid–vapor interface,
ru�p � n̂n� ¼ 0; ð15Þ

and a shear-driven flow solution, u�s , that satisfies

o2u�s
ox�2

þ k2
o2u�s
oy�2

¼ 0; ð16Þ

subject to a dimensionless boundary condition that as-

sumes a uniform shear stress along the interface,

n̂n� � ru�s ¼ 1: ð17Þ

Thus, the combined solution can be expressed as

u� ¼ u�p þ u�ss
�: ð18Þ

Eqs. (14)–(17) show that the solutions u�p and u�s are in-

dependent of the magnitude of the interfacial shear

stress and depend only on the geometry of the channel

and the free surface.

Since gas viscosities are generally orders of magni-

tude smaller than liquid viscosities, interfacial shear

forces will often be very small compared to those on the

channel walls, particularly when the channel is relatively

deep. It is for this reason and for simplicity that we have

assumed uniformity of the shear stress over the interface

with the understanding that this represents the average

of an interfacial stress that may vary across the interface.

Since our ultimate goal is the formulation of one-

dimensional models, an estimate of the interfacial stress

on the liquid can be based on the relative speed of the

one-dimensional gas flow above the liquid.

The governing equations were solved numerically to

obtain axial velocity distributions like those shown in

Figs. 3 and 4 for different aspect ratios and contact

angles. This was accomplished by discretizing the gov-

erning equations on a nonuniform grid using the finite

volume method. To verify our numerical results calcu-

lations were performed to obtain the friction factor co-

efficient for the triangular groove problem studied by

Ayyaswamy et al. [8] as well as the rectangular groove

problem studied by Schneider and DeVos [1]. By suc-

cessive grid refinements we obtained agreement within

0.1% over the full range of parameters they considered.

For the results reported in this paper, the gridding was

chosen so that a doubling of the grid points altered the

computed mean speed by less than 0.5%, an error

smaller than the deviations between our numerical re-

sults and analytical approximations given in the next

sections.

The dimensionless mean velocities are obtained by

averaging the axial velocity profiles over the channel

cross-section

U � ¼ 1

A

Z Z
A
u�ðx�; y�ÞdA: ð19Þ

Note that this average is taken over the portion of the

channel that is occupied by the liquid so that the mass
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Fig. 3. Axial velocity contours for pressure-driven flow: (a) a ¼ 0�, h ¼ 0; (b) a ¼ 45�, h ¼ 1.
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flux of the liquid may be written as qASU , where A is the

full cross-sectional area and S is the liquid area fraction.

The friction factor, f , is related to the dimensionless

mean velocity by

f � Re ¼ D�2
h

2U � ; ð20Þ

where Re ¼ quDh=l is the Reynolds number, Dh is the

hydraulic diameter and D�
h ¼ Dh=W .
4. Results for pressure-driven flow

Fig. 5a shows the mean velocity as a function of as-

pect ratio for several choices of the contact angle. As k
approaches zero, all the curves collapse onto a single

well-known asymptote, U � ¼ 1=12. In this limit the

depth of the fluid greatly exceeds the channel width and

the flow resembles that between parallel planes of infi-

nite extent. Since the depth of the meniscus region is

small compared to the overall fluid depth, there is no

dependence on the contact angle in this regime. The
downward sloping intermediate asymptote shown in

Fig. 5a is given by U � ¼ 1=3k2. As explained in Ap-

pendix A, this solution is applicable for fluid layers

having a depth much smaller than the channel width

such that the pressure gradient is balanced by the shear

stress on the channel floor. With increasing k, the curves
in Fig. 5a transition from the left hand asymptote onto

the intermediate asymptote, U � ¼ 1=3k2, until finally

turning onto separate horizontal asymptotes, U �
CðaÞ,

describing corner flows like that shown in Fig. 3a.

The corner flows depicted in Figs. 2c and 3a become

applicable in the limit as h ! 0 and hence k ! 1 and so

these appear as the horizontal asymptotes on the right

side of Fig. 5a. For convenience, these corner flow so-

lutions may be characterized by the alternate aspect

ratio K ¼ W =H , where H is the height of the meniscus at

its contact with the side wall. The relationship between

K and a is given by Eq. (3). The advantage of parame-

terization in terms of K rather than a is that the mean

velocities of the corner flows may be viewed as a tran-

sition between asymptotes that apply in the limits as

K� 2 ! 0 (i.e. a ! 0) and K ! 1 (i.e. a ! 90�), as
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seen in Fig. 5b. The left hand asymptote is given by

U �
C ¼ 0:0027. This is the mean speed for a corner flow

having a contact angle of 0�; velocity contours for this

case were shown earlier in Fig. 3a. This numerical result

was also checked against that obtained by Ransohoff

and Radke [9]. The right hand asymptote in Fig. 5b is

given by U �
C ¼ 1=7K2 as K ! 1. This result, derived in

Appendix A, is based on two observations that apply in

this limit: first, that the meniscus profile is well ap-

proximated by a parabola and, second, that the liquid

layer becomes shallow such that the flow is resisted

mainly by the shear stress on the bottom surface.

All of the asymptotic solutions explained above and

in Appendix A are blended analytically to obtain a rel-

atively simple and accurate expression for the mean

velocity as a function of contact angle and aspect ratio.

The blend is obtained using the following expression

that applies to any pair of asymptotes, U �
1 and U �

2 :

U � ¼ ðU �
1U

�
2 Þ

m

ðU �
1 Þ

m þ ðU �
2 Þ

m

� �1=m
: ð21Þ
The expression in Eq. (21) reduces to U �
1 in the limit

when U �
1 � U �

2 and, conversely, reduces to U �
2 when

U �
2 � U �

1 . The parameter m controls the shape of the

transition between the asymptotes.

For the corner flow solutions shown in Fig. 5b, the

left and right asymptotes U �
1 and U �

2 are defined by

U �
1 ¼ U �

C;0 ¼ 0:0027; ð22Þ

U �
2 ¼ 1

7ðK� 2Þ2 þ bðK� 2Þk
: ð23Þ

The first of these is simply the corner flow that applies

when a ¼ 0� (i.e.K ¼ 2 as seen from Eq. (3)). SinceK ¼ 2

is the minimum possible value of K for a spanning me-

niscus, the independent variable used in the asymptotic

blending should be taken as K� 2. The right hand so-

lution, U �
2 , reduces to the correct asymptote, 1=7K2, in

the limit as K ! 1. The additional term included in the

denominator could be omitted but provides the flexibility

to improve the fit without affecting the asymptotic be-

havior in either limit, provided k < 2. The blended result
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Fig. 5. Dimensionless mean velocity as a function of aspect
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U �
C ¼

ðU �
C;0Þ

m

1þ ðU �
C;0Þ

m½7ðK� 2Þ2 þ bðK� 2Þk �m

( )1=m

; ð24Þ

is accurate to within 2% relative error with the para-

meters m, b, and k set to 1.88, 150, and 0.87, respectively.

The relative error is defined by the difference between

the numerical result and the analytical approximation

divided by the numerical result. Thus, the accuracy of

the blending approximations is defined with respect to

the numerical solutions of the governing equations given

in Section 3.

To obtain a comprehensive expression describing the

mean velocity for all contact angles and aspect ratios,

the asymptotes U �
1 and U �

2 are chosen as

U �
1 ¼ 1

12
; ð25Þ
U �
2 ¼ 1

akþ 3k2

� �n�
þ ðU �

CÞ
n
�1=n

: ð26Þ

The left asymptote, U �
1 , applies to very deep channels

while the right asymptote, U �
2 , ultimately approaches

one of two alternative limits as the liquid layer becomes

shallow and k ! 1. The corner flow solution is recov-

ered for any finite UC; otherwise, the mean speed de-

creases as 1=3k2, as appropriate for a contact angle of

90�. As explained earlier, the linear term is added to

improve the fit without disturbing the asymptotes. When

Eqs. (25) and (26) are substituted into Eq. (21) with the

parameters m ¼ 1:31, n ¼ 0:82, and a ¼ 8:37, the mean

velocity can be approximated with a maximum relative

error of 10% for a in the range 0�6 a6 60�. Different

sets of (m; n; a) can be used to obtain different levels of

accuracy over various ranges of the contact angle. For

the familiar case of a relatively wide channel (i.e.

W � ðc=qgÞ1=2) having a flat interface over most of the

channel width, or equivalently for narrow channels with

a � 90�, the parameters m ¼ 1, n ¼ 1, and a ¼ 2:6 yield

a relative error of 2.5%. In heat pipes and other capillary

pumping applications where small contact angles are of

great importance, the parameters m ¼ 1:4, n ¼ 0:83, and
a ¼ 9:71 yield a maximum relative error of only 6% for

contact angles in the range 0�6 a6 30�.
Since one-dimensional flow models often utilize the

saturation or liquid area fraction as a dependent vari-

able, it is useful to plot the mean speed as a function of

the saturation. This is done in Fig. 6 for different values

of the contact angle and the aspect ratio, E ¼ D=W ,

where D is the full depth of the channel rather than the
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liquid depth. As the saturation approaches unity, all of

the results tend toward the asymptotic value of 1/12,

descriptive of flow between parallel walls, although the

result for E ¼ 1 always remains well below this limit

because frictional forces on the channel floor always

remain important in shallow channels. Note that the

maximum saturation cannot reach unity for contact

angles less than 90� because the concave meniscus pre-

vents complete filling.

With decreasing saturation, and hence decreasing

fluid depth, the mean speed decreases as the friction on

the channel floor progressively influences a greater

fraction of the fluid within the channel. As the depth

becomes sufficiently shallow, the mean fluid speed be-

comes proportional to the square of the depth whereas

the saturation is simply proportional to the depth.

Hence the mean speed grows as the square of the satu-

ration, as apparent in the straight sections having a slope

of 2 in Fig. 6. This regime, corresponding to the 1=3k2

asymptote noted earlier in Fig. 5a, is mainly a feature of

flows having a contact angle approaching 90�. For

contact angles less than 90�, the saturation decreases to

a finite value corresponding to the corner flows dis-

cussed earlier. For geometric reasons, the saturations

corresponding to these corner flows are larger for

smaller values of both the aspect ratio, E, and the con-

tact angle.

As explained earlier, for saturations smaller than

those shown in Fig. 6, the separate flows in the opposing

corners must have equal contact angles on the bottom

and side walls and their mean speeds are given by the

solutions presented in [8–10]. Since the mean speed and

the flow area of these equilateral corner flows are both

proportional to the square of the wetted length along the

walls, the speed is simply proportional to the saturation

in this regime.

angles; (b) corner flow solutions.
5. Results for shear-driven flow

Fig. 7a shows the mean velocity of shear-driven flows

as a function of aspect ratio for several choices of the

contact angle. As in the preceding pressure-driven flows,

several asymptotic regimes are readily identified and

these can be blended to construct composite expressions

for the mean velocity.

The corner flow solutions for this case are shown in

Fig. 7b. As before, the left hand asymptote of the corner

flows is simply a constant, and the right hand asymptote

is derived by considering the flow in a thin layer having a

parabolic meniscus, as appropriate for contact angles

approaching 90�. As explained in Appendix A, the shear

stress in this thin layer is uniform through the depth and

equal to the applied unit stress at the free surface. Thus,

the maximum speed at the surface and the mean speed

are both directly proportional to the layer depth. Inte-
gration across the channel yields a mean speed of

U �
2 ¼ 3=10K. These two asymptotic results are first

written in terms of the independent variable K� 2,

U �
1 ¼ U �

C;0 ¼ 0:0313; ð27Þ

U �
2 ¼ 3

10ðK� 2Þ ; ð28Þ

and then substituted into Eq. (21) to yield

U �
C ¼

ðU �
C;0Þ

m

1þ 10
3
ðK� 2ÞU �

C;0

h im
8<
:

9=
;

1=m

: ð29Þ

When the parameter m ¼ 1:11, Eq. (29) approximates

the mean velocities of the shear-driven corner flow to

within 4% relative error.
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Fig. 8. Dimensionless mean velocities vs. saturation for shear-

driven flow.
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Unlike pressure-driven flows, shear-driven flows in

deep channels have mean speeds that decrease linearly

with the fluid depth, as seen on the left hand side of Fig.

7a. This behavior is predicted by a Fourier series solu-

tion, given in Appendix A, that yields a mean speed of

exactly k=12 for a contact angle of 90�. The observed

reduction of mean speed with liquid depth occurs be-

cause the driving shear force is applied only at the top

surface whereas the resistive shear forces on the side

walls act at all depths. As a result, local speeds decrease

exponentially with distance below the surface, as ap-

parent in the contour plots of Fig. 4b. For sufficiently

deep channels, the flow is essentially stagnant at depths

more than two or three channel widths below the top

surface and, regardless of the overall depth, the flow

near the top remains the same. Thus, further increases in

channel depth cause a reduction in the mean speed be-

cause the total fluid flow rate in the numerator of Eq.

(19) remains unchanged, while the total fluid-filled area

in the denominator continues to increase linearly with

the overall fluid depth.

Because the shear-driven flows are dominated by the

near surface layer, the mean speed is somewhat sensitive

to the contact angle, even when the layer is deep. This is

apparent in the moderate separation between the left

hand asymptotes in Fig. 7a. This set of parallel asymp-

totes is very accurately approximated by U �
1 ¼ k=c

where the constant is given by the following function of

the contact angle,

cðaÞ ¼ �1:55a2 þ 0:84aþ 14:57; 06 a6 p=2: ð30Þ

A composite expression for the mean speed of shear-

driven flows is constructed by blending the left hand

asymptotes of the preceding paragraph with the corner

flow solutions discussed earlier in the context of Fig. 7b.

In addition, it is necessary that the mean speed decrease

as 1=2k as k ! 1 for a contact angle approaching 90�;
this shallow-layer limit is derived in Appendix A. Thus,

to accommodate all three of these asymptotes, we select

the following expressions analogous to those given by

Eqs. (25) and (26) for pressure-driven flow.

U �
1 ¼ k

c
; ð31Þ

U �
2 ¼ 1

2kþ dkk

� �n�
þ ðU �

CÞ
n
�1=n

: ð32Þ

When Eqs. (31) and (32) are substituted into Eq. (21)

with the parameters m ¼ 1, n ¼ 1:75, d ¼ 1, and k ¼ 0:6
the mean velocity can be approximated with a maximum

relative error of 15% for a in the range 0�6 a6 90�. For
contact angles in the range 85�6 a6 90� the parameters

m ¼ 2:6, n ¼ 1:4, d ¼ 5:9, and k ¼ �0:3 yield a relative

error of 5%. For contact angles in the range 0�6 a6 30�
the parameters m ¼ 1:1, n ¼ 1:38, d ¼ 2, and k ¼ 0:9
yield a maximum relative error of only 5%.
Fig. 8 shows the mean velocity of shear-driven flows

as a function of saturation for various contact angles

and aspect ratios, E ¼ D=W . In analogy with Fig. 7a,

mean speeds are generally highest for intermediate val-

ues of the fluid depth, or equivalently, the saturation. At

small saturations, the shallow liquid layer is impeded by

shear on the channel floor. Conversely, at large satura-

tions only the top portion of the liquid layer is in motion

such that the mean speed decreases with increasing sat-

uration whenever the layer depth is greater than about

one channel width. As a result, the mean speed decreases

linearly with saturation for all saturations greater than

about 0.1 and 0.01, respectively, in channels having as-

pect ratios, E, of 10 and 100.

An important conclusion to be drawn from Figs. 7a

and 8 is that surface shear forces are generally much less

important than pressure forces whenever fluid layer

depths exceed one or two channel widths. This is be-

cause the surface shear has little influence beyond a

depth of two or three channel widths, whereas pressure

forces act with equal strength at all depths. In capillary-

driven evaporative cooling device, deep fluid layers are

generally beneficial since they provide greater mass flow

and, hence, greater cooling ability. In addition, these

deep layers are less susceptible to retardation by the

shear forces of a countercurrent vapor flow, as occurs in

many heat pipe devices. Indeed, for channel aspect ratios

greater than about E ¼ 10, surface shear affects will have

little influence on the mean fluid speed until the channel

is nearly dry. It should be noted, however, that increases

in channel depth cause an increase in the temperature

difference required to conduct heat from the channel
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base to the meniscus. Thus, the device design must in-

corporate an optimal balance between these opposing

considerations.
6. Conclusions

The mean velocity of a liquid flowing in a rectangular

microchannel has been investigated both numerically

and analytically for contact angles ranging from 0� to

90� and for the full spectrum of channel aspect ratios.

Linearity of the governing equations permitted decom-

position of solutions into pressure-driven and shear-

driven components that were separately treated but may

be superposed to represent any conditions of aiding or

opposing forces. The pressure-driven solutions apply

equally well to flows driven by capillary or gravity forces

as well as applied pressures. Surface shear forces are

sometimes important in parallel liquid–vapor flows

arising in evaporative cooling devices, particularly when

channel depths are relatively shallow.

The primary contribution of the present study is the

derivation of analytical expressions that are very com-

prehensive in their range of application, yet remain rel-

atively simple to apply and accurate within a few percent

for most flow regimes of interest. Across the full range of

flow conditions, relative errors are less than 15%.

These analytical approximations were constructed by

blending of asymptotic solutions that apply in limiting

regimes where the fluid depth at the channel centerline is

either very small or very large compared to the channel

width. In the deep limit, the flow resembles that between

infinite parallel planes, but the solutions are qualitatively

very different for pressure- and shear-driven flows. The

mean speed of a pressure-driven flow approaches a

constant value that is independent of the contact angle,

whereas the mean speed of a shear-driven flow decreases

linearly as the reciprocal of the relative fluid depth and

has a persistent dependence on contact angle.

In the opposing limit of relatively shallow fluid layers

the meniscus approaches the bottom of the channel,

producing a pair of nearly disjoint corner flows. Because

of symmetry about the channel centerplane, the appar-

ent contact angle at the channel bottom is always 0�,
whereas the contact angle at the side wall is arbitrary.

These corner flows are modeled by blending of asymp-

totic solutions that apply in the limits of 0� and 90�
contact angles. In the latter shallow-layer limit, the free

surface is well approximated by a parabola and the

mean speed increases with the wetting height on the side

wall, either linearly or quadratically for the respective

cases of shear- and pressure-driven flows.

When the meniscus actually contacts the channel

floor, the flow must separate into a pair of corner flows

having equal contact angles and, hence, equal wetted

lengths on the bottom and side walls. These equilateral
channel flows, previously studied in [8–10], are not the

same as those discussed just above.

Although specific engineering applications have not

been explored here, the present models are currently

being used to investigate two important classes of

problems, transient wetting behavior and steady evap-

orating flows. These applications are of increasing im-

portance in a number of microscale applications

including cooling of microelectronics, replication of

MEMS devices by molding, and chip-based micro-

channel devices used for identification and synthesis of

chemical and biological species.
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Appendix A. Asymptotic solutions

In this appendix, we develop asymptotic solutions of

the governing equations that apply in the limits of small

and large aspect ratios, first for pressure-driven and then

for shear-driven flows. The resulting velocity profiles are

integrated over the flow domain to obtain the analytical

expressions for mean velocity that are included in the

main text.

A.1. Pressure-driven flow

The governing equations for the pressure-driven flow

were given by Eqs. (14) and (15). In the limit as k ! 0,

the flow resembles that between closely spaced parallel

plates. Thus, the derivatives of velocity with respect to

depth are generally small compared to the cross-channel

derivatives so that the velocity becomes a function of

horizontal position alone.

u�pðx�Þ ¼
1

2
1
4

�
� x�2

�
; �1=26 x� 6 1=2: ðA:1Þ

Although this expression does not apply to the bound-

ary layers at the channel top and bottom, these regions

become increasingly less important in the limit as k ! 0.

Substituting Eq. (A.1) into Eq. (19) and integrating over

the domain yields the following asymptotic expression:

U � ¼ 1

12
: ðA:2Þ

Conversely, as the aspect ratio k ! 1 the layer becomes

very shallow and the vertical shear stresses become large
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compared to those in the cross-channel direction such that

the velocity is a function of y alone, except in the relatively
thin boundary layers on the side walls of the channel.

u�pðy�Þ ¼
1

2k2
y�ð2� y�Þ; 06 y� 6 1; ðA:3Þ

The integral of this expression over the flow domain is

dependent upon the shape of the meniscus and the fluid

depth at the center of the channel. Some special, but

important, cases are presented below, followed by a

more general result. For a contact angle of 90� the me-

niscus is flat and the integration yields

U � ¼ 1

3k2
: ðA:4Þ

This shallow-layer asymptote is shown in Fig. 5a along

with the opposing deep-layer asymptote given in Eq.

(A.2).

For contact angles smaller than 90� the flow geom-

etry approaches a corner flow configuration like that

shown in Fig. 2b as the layer becomes shallow. From

Fig. 1 we see that when h ! 0, the free surface can be

represented by

x
R

	 
2

þ y
R

	
� 1


2

¼ 1; ðA:5Þ

where R is the radius of the free surface. As a ! 90�,
R ! 1 and Eq. (A.5) can be approximated by

x
R

	 
2

� 2
y
R
¼ 0; ðA:6Þ

or

y ¼ x2

2R
; ðA:7Þ

where R ¼ W 2=8H . Eq. (A.7) shows that when h ¼ 0 and

a ! 90� (K ! 1), the free surface can be approximated

by a parabola. This expression greatly simplifies the

development of the right asymptote for the corner flows

in Fig. 5b as shown next.

Let y and dx be the height and width of a fluid ele-

ment at x, then the area, A, occupied by the fluid is

A ¼ 2

Z W =2

0

y dx ¼ 1

3
WH : ðA:8Þ

As K ! 1 (a ! 90�) Eq. (A.4) suggests that each fluid

element at x, of width dx and area dA ¼ y dx, moves with

an approximate average axial speed, U �
x , given by

U �
x ðxÞ ¼

1

3K2ðxÞ
; ðA:9Þ

where KðxÞ ¼ W =yðxÞ. The mean velocity over the entire

fluid area is then
U � ¼ 2

A

Z W =2

0

U �
x ðxÞdA ¼ 1

7K2
: ðA:10Þ

As noted earlier, Eqs. (A.4) and (A.10) are special cases

of a more general expression that applies when the layer

depth is small, but nonzero, and the meniscus is rela-

tively flat. For that case, the liquid depth y in Eq. (A.7) is

replaced by

y ¼ hþ x2

2R
; ðA:11Þ

where R ¼ W 2=8ðH � hÞ. The liquid area is then given

by A ¼ ðH þ 2hÞW =3 and following the procedures used

to obtain Eq. (A.10), the mean velocity becomes

U � ¼

K
k

� �3

þ K
k

� �2

þ 3

5

K
k

� �
þ 1

7

1þ 3
K
k

� �� �
K2

; ðA:12Þ

where K and k are defined by Eqs. (3) and (13), re-

spectively. Clearly, in the limit as k ! 1, Eq. (A.12)

reduces to Eq. (A.10) and as K ! 1, Eq. (A.12) yields

the expression obtained in Eq. (A.4).

A.2. Shear-driven flow

The governing equations for the shear-driven flow

are given by Eqs. (16) and (17). When the fluid layer is

relatively shallow and flat, Eq. (17) reduces to

ou�s
oy�

¼ 1

k
: ðA:13Þ

The solution is given by

u�sðy�Þ ¼
1

k
y�; 06 y� 6 1 ðA:14Þ

and the corresponding mean velocity is

U � ¼ 1

2k
: ðA:15Þ

In the opposite limit of deep slender channels the in-

fluence of an aiding or opposing shear is localized near

the free surface, but the flow field remains two-dimen-

sional in that region. Therefore, to obtain the velocity

profile, the complete two-dimensional equation given by

Eq. (16) subject to boundary conditions given in Eqs. (8)

and (A.13) must be solved analytically. Using the

method of separation of variables, the velocity profile

for a flat interface (a ¼ 90�) is given by

u�sðx�; y�Þ ¼
X1
n¼0

2½1� ð�1Þn� sinh np
k
y�

	 

sinðnpx�Þ

n2p2 cosh
np
k

	 
 ;

ðA:16Þ
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from which the mean velocity is obtained as

U � ¼ k
X1
n¼0

2½1� ð�1Þn�2

n4p4
1
h

� cosh�1 np
k

	 
i
: ðA:17Þ

As k ! 0, the hyperbolic cosine term in Eq. (A.17)

vanishes and the remaining series of reciprocal powers

sums to 1/12 (see [12]). Thus,

U � ¼ k
12

: ðA:18Þ

When a 6¼ 90� the denominator of Eq. (A.18) is replaced

by the function cðaÞ given in Eq. (30). Eqs. (A.15) and

(A.18) are illustrated in Fig. 7a.

The corner flow asymptote for the shear-driven flow

is obtained by following the procedure developed in

Appendix A.1 to obtain the corner flow asymptote for

the pressure-driven flow. As K ! 1 (a ! 90�), Eq.

(A.15) suggests that each fluid element at x, of width dx
and area dA ¼ y dx, moves with an approximate average

axial speed, U �
x , given by

U �
x ðxÞ ¼

1

2KðxÞ ; ðA:19Þ

where KðxÞ ¼ W =yðxÞ. Integrating Eq. (A.19) over the

entire fluid area gives

U � ¼ 2

A

Z W =2

0

U �
x ðxÞdA ¼ 3

10K
: ðA:20Þ

As in the pressure-driven case, Eqs. (A.15) and (A.20)

are special cases of the following more general expres-

sion that applies for large values of both k and K.

U � ¼

3

2

K
k

� �2

þ K
k

� �
þ 3

10

1þ 3 K
k

� �� �
K

: ðA:21Þ

In the limit as k ! 1 Eq. (A.21) reduces to Eq. (A.20)

and as K ! 1, Eq. (A.21) yields the expression ob-

tained in Eq. (A.15).
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